Annual Report – 2010 Quantifying, Predicting, and Exploiting (QPE) Uncertainty James F. Lynch MS #12, Woods Hole Oceanographic Institution Woods Hole, MA 02543 Phone: (508)289-2230 Fax: (508) 457-2194 e-mail: jlynch@whoi.edu Timothy F. Duda MS #12, Woods Hole Oceanographic Institution Woods Hole, MA 02543 Phone: (508)289-2495 Fax: (508) 457-2194 e-mail: tduda@whoi.edu Ying-Tsong Lin MS #12, Woods Hole Oceanographic Institution Woods Hole, MA 02543 Phone: (508)289- 2329 Fax: (508) 457-2194 e-mail: ytlin@whoi.edu Grant Number: N00014-08-1-0763 http://acoustics.whoi.edu ## LONG TERM GOALS The long term goal of our QPE work is to: 1) quantitatively understand what the uncertainties are in low frequency (10-1000 Hz) acoustic propagation and noise that are caused by variable and complex oceanography and seabed structure, 2) determine the limits to predicting the fluctuating and variable propagation and noise in this frequency regime and others, and 3) ascertain what naval advantage may be gained (if any) by understanding the nature of the uncertainty. #### **OBJECTIVES** Our primary objectives this year were to analyze the data from the main experiment in the East China Sea in 2009, and to work towards explanations of what was observed. Particular emphasis was placed on: 1) cataloguing the data set obtained for acoustics, 2) ambient noise data analysis, and 3) the theoretical explanation of the strong azimuthal anisotropy of transmission loss (TL) observed. ## **APPROACH** The main experiment to the northeast of northern Taiwan was successfully carried out in August-September, 2009. We have methodically looked through the environmental data, the OMAS signal transmission data, and the noise data to identify significant features. The noise data was examined, and bandpass filtered time series were created, as well as a catalogue of interesting events (and their possible origins). Regarding the azimuthal anisotropy of TL, a body of theory was generated which we feel could explain the strong anisotropy observed in this data set, as well as in the SW06 data set. | maintaining the data needed, and c
including suggestions for reducing | lection of information is estimated to
ompleting and reviewing the collect
this burden, to Washington Headqu
uld be aware that notwithstanding an
DMB control number. | ion of information. Send commen
arters Services, Directorate for Int | ts regarding this burden estimate formation Operations and Reports | or any other aspect of the s, 1215 Jefferson Davis | his collection of information,
Highway, Suite 1204, Arlington | |--|---|---|--|--|--| | 1. REPORT DATE 2010 | | 2. REPORT TYPE | | 3. DATES COVERED 00-00-2010 to 00-00-2010 | | | 4. TITLE AND SUBTITLE | | | | 5a. CONTRACT NUMBER | | | Annual Report - 2010: Quantifying, Predicting, and Exploiting (QPE) Uncertainty | | | | 5b. GRANT NUMBER | | | | | | | 5c. PROGRAM ELEMENT NUMBER | | | 6. AUTHOR(S) | | | | 5d. PROJECT NUMBER | | | | | | | 5e. TASK NUMBER | | | | | | | 5f. WORK UNIT NUMBER | | | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Woods Hole Oceanographic Institution,MS #12,Woods Hole,MA,02543 | | | | 8. PERFORMING ORGANIZATION
REPORT NUMBER | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | | | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | | 12. DISTRIBUTION/AVAIL Approved for publ | LABILITY STATEMENT ic release; distributi | ion unlimited | | | | | 13. SUPPLEMENTARY NO | OTES | | | | | | 14. ABSTRACT | | | | | | | 15. SUBJECT TERMS | | | | | | | 16. SECURITY CLASSIFIC | | 17. LIMITATION OF
ABSTRACT | 18. NUMBER
OF PAGES | 19a. NAME OF
RESPONSIBLE PERSON | | | a. REPORT
unclassified | b. ABSTRACT
unclassified | c. THIS PAGE
unclassified | Same as Report (SAR) | 4 | KESPUNSIBLE PERSON | **Report Documentation Page** Form Approved OMB No. 0704-0188 ## WORK COMPLETED/ACCOMPLISHMENTS Our accomplishments this year included: 1) a careful catalogue of the experimental data, as documented in a WHOI Technical Report, 2) a preliminary catalogue and analysis of the noise, which has been presented as an informal WHOI report, and which will be the basis for later papers, and 3) a body of theory explaining azimuthal anisotropy in TL, which will be part of papers on both this data set and a similar data set for the SW06 experiment. ## **RESULTS** During the QPE main experiment, we made 14 separate mooring deployments and recoveries, all of which gave us usable data, and in some cases extraordinarily good data. We had a maximum of four environmental monitoring moorings at each deployment site, and the temperature data from the sensors on one of these moorings is shown in Figure 1. Figure 1. Section of thermistor string data from mooring at shelfbreak site B during leg 1 of the QPE main experiment. Very strong internal tides and internal waves are noted. One day of time is shown. The very strong internal tides and internal waves are prominent, and should be large influences on acoustic propagation and noise at the experimental site. Also deployed were two SHRU (several hydrophone receiver units) four-element vertical receiver arrays per deployment site, which gave a stationary moored counterpart to OASIS, Inc. drifting sonobuoys that were used in the area, as well as spatial diversity. These units were used to monitor signals from the OASIS Mobile Acoustic Sources (OMAS), as well as monitor ambient noise in the area. We will discuss the latter in this report. Figure 2. Ambient noise in the 175-225 Hz band, showing very large variation (up to 50 dB), a strong 12 hour period, and reasonable correlation between two receivers. We see in the noise records from two of the SHRU units that the variability in the ambient noise is very high, and indeed is probably the largest source of uncertainty in the sonar equation. The causes of this variability and its predictability will be the subjects of our studies in the coming year. ## IMPACT/APPLICATIONS The impacts of our work so far are that we have seen interesting effects concerning: 1) azimuthal anisotropy, 2) ambient noise, and 3) propagation over slopes and canyons that may have naval sonar implications. We also see our data tying in to the larger Prediction, Quantification, and Exploitation of Uncertainty theme in the coming year. ## TRANSITIONS One eventual transition of our work will be to naval sonar systems and to sonar analysis, where the interest is in "the error bars" in ocean acoustic field and system performance prediction. # RELATED PROJECTS The SW06 experiment also had an Uncertainty-related component, only in a different geographical area. OASIS Inc. QPE component. Numerous physical oceanographic QPE field studies. MIT data-driven modeling of the work area. # **PUBLICATIONS** Newhall, A.E., J.F. Lynch, G.G. Gawarkiewicz, T.F. Duda, N.M. McPhee, F.B. Bahr, C.D. Marquette, Y.-T. Lin, S. Jan, J. Wang, C.-F. Chen, L.Y.S. Chiu, Y.J. Yang, R.C. Wei, C. Emerson, D. Morton, T. Abbot, P. Abbot, B. Calder, L. Mayer, P.F.J. Lermusiaux, "Acoustics and oceanographic observations collected during the QPE experiment by Research Vessels OR1, OR2, and OR3 in the East China Sea in the Summer of 2009", Woods Hole Oceanographic Institution Tech. Report, WHOI-2010-06, August, 2010.